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Microbunch Temporal Diagnostic by Compton 
Scattering in Interfering Laser Beams 
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I.V. Pogorelsky 
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Abstract. The exact solution of the classical nonlinear equation of motion for a relativistic 
electron in the field of two electromagnetic (EM) waves is obtained. For the particular case of 
the linearly polarized standing EM wave in the planar optical cavity, the intensity of the 
nonlinear Compton scattering, the time of flight, and the momentum variation after the 
relativistic electron passes along the cavity axis are calculated in weak and strong field limits. 
The extent of these effects depends on the initial phase of the EM wave when the electron 
enters the cavity. This can be used for the production, diagnosis, and acceleration of 
relativistic electron (positron) microbunches. 

INTRODUCTION 

The theory of the Compton effect in interfering EM waves, in particular, in two 
counter-propagating plane waves, has been addressed previously to describe the 
Kapitza-Dirac effect [1,2], Compton lasers [3,4], and inverse Compton laser 
acceleration [2,5]. The physical principle of the nanometer-resolution Shintake electron 
beam profile monitor [6-91 is also based upon the understanding of the Compton effect 
in a standing EM wave. The vacuum beat wave laser accelerator concept [lo] relies on 
the ponderomotive acceleration resulting from the beat wave produced by the 
interaction of two copropagating laser beams 

Temporal diagnostics of ultra-fine electron microbunches (sized to a portion of the 
laser wavelength) is another potential application for intense standing EM waves. 
Production and reliable characterization of such microbunches are essential for 
development of far-field and near-field laser accelerator schemes into practically 
meaningful monochromatic electron (positron) accelerators. The example of such a 
scheme is the staged electron laser acceleration experiment, STELLA, at the 
Brookhaven Accelerator Test FaciliQ [l 11. In this experiment, a train of the 1 ,u m (3 
fs) thin electron microbunches, produced by the lFEL method and periodical to the 
CO;! laser wavelength, /z =lO pm, is phased to the inverse Cherenkov laser 
acceleration stage driven by the same CO2 laser. Observation of Compton scattered 
radiation from the electron interacting with a standing EM wave, produced by two 
counter-propagating CO2 laser beams, may permit a direct assessment of the 
microbunch temporal structure. The inverse process may provide also an alternative 
mechanism to generate microbunches starting with a quasi-continuous electron pulse. 
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Theoretical studies of the Compton effect in two interfering EM waves, 
comprehensively reviewed by M.V. Fedorov [2], generally capitalize on various aspects 
of the perturbation theory or other approximate approaches. As long as we are 
interested in processes nonlinear to the field, the approach based on exact solution of 
equations of motion is the most appropriate. The exact solutions of classical equations 
of the electron motion in a single plane EM wave have been obtained by many authors 
using different methods (see [12-161 and references therein). A natural extension of this 
approach is to apply the same methods to the case of two interfering plane waves. 

In the recently submitted publication [ 171, this intent is partially accomplished 
using the approach developed in [13, 141. In the present paper, we review results from 
[17] which are relevant to the problem of the microbunch diagnostics. In Section 2, we 
show the exact solution of classical nonlinear equations of electron motion in the field 
of two plane EM waves. 

The particular case of a standing wave is considered in Section 3. We calculate the 
time of flight for the electron passing through the radiation-filled plane-parallel optical 
resonator and demonstrate that this parameter depends upon the phase of the standing 
EM wave at the moment when the electron enters the cavity. 

In Section 4, we calculate the phase dependent intensity radiated due to Compton 
scattering when the relativistic electron passes along the axis of the plane-parallel 
optical cavity. The obtained results, discussed in Section 5, can be used for short 
relativistic electron bunch diagnostics. 

SOLUTION OF NONLINEAR EQUATION OF MOTION 

Following the approach outlined in [13,14], we consider a classical equation of the 
electron motion in EM field: 

(1) 

where zP is the four-dimensional vector of the electron energy-momentum 7rP ( E, 5) 

equal to $ = E* - p*, z is time in the relativistic fiame of the electron (local or’ 

proper time), and Fpv is a tensor of EM field, expressed through the vector potentials 

A V,P ’ 

aA, aA, --_- 
FpV - ax, ax, 9 (2) 

A, = av(1)(+av(2)(52), (3) 

where a, (‘)(Sl). d2)( 52 ) are vector potentials of two linearly polarized plane waves 

with frequencies o 1 and cc~ , s I= kf) x, and 52 = kf) X, are the phases of 



corresponding plane waves, and k,? (01, 61) and kf)( c02,&2) are four-dimensional 

wave vectors. In Eqs. (l), (2) and below, the system of units with c = 1, h = 1 is used. 
A four-dimensional electron vector X~ is 

(4) 

Consider linearly polarized waves that satisfy generalized transverse conditions 

(IPa( = 0, (k(*)a(*)) = 0 . (5) 

We search for the solution of Eqs. (l)-(4) as a linear decomposition over four-vectors 
(1) P/44$ pap (2)) $(‘), k,(2), 

+) = Pp -+&i) +a~'(h)]+kjf)~(z)~k~)f*(~), (6) 

where pP is the four-vector of the electron initial momentum before the electron enters 

the EM field. Tbis brings us to the following result [17]: 

where quantities Fr and F2 are 

e 

, (8) 

and the phases of the fields satisfy the equation 

41,2 = 
(k(zp) exp( ,; Fz,lm) * 

ELECTRON IN PLANE-PARALLEL OPTICAL RESONATOR 

Let us apply the solution obtained in Section 2 to the particular case of a standing 
EM wave formed by two linearly polarized plane waves of the same frequency w, 
counter-propagating along the x-axis and polarized along the y-axis with 



ay(‘)(ql) = -(Eo/2o)cos~~ , q1 = C&-xx) , 

arC2)(*2) = (Eo/20)cosG2 , 9 = C&+x) , (10) 

A,, =a,, (*) +ayt2) = -(Eo/w)sinotsinwx , 

where Ed is the amplitude of electric field. A standing wave is confined between two 
conducting surfaces (mirrors) placed at x=0 and x=L=n;1/2 = w/w, n=1,2,3.... 

The electron moving along the axis of the optical resonator enters the cavity at the 

moment t = ti( ) rj an d 1 eaves it at t = tf rf ( ) (t is time in the laboratory scale, z is the 

local time of the moving electron). Tie of flight in the lab system is 

T = tf - ti = jzlT YdZ - -‘j”f 7x&, 
m =i (11) 

where y is a Lorentz factor of the electron. 

Weak Fields 

Let us consider the case of the weak field, when the normalized field amplitude is 

?12 = e2a2/m2 ((1, where a = E0/20 is the amplitude of the potentials in Eq. (10). 

In this case, Eq. (8) for Fl,2 can be expanded in series of q*, and Eq. (7) for fr,* 

takes the form 

(12) 

In the considered below ultrarelativistic case when p is collinear to i(l), we obtain: 

k(‘)p=o(E-p)=wEm2/2p2, k’*)p=w(E+p)=2w&, and Ifil((lfil. 

by Eq. (1% 

sif -cos*Gi - 1 j Rf cosg2 sin gldq sli , (13) 

where 

Sli =Oti (t=ti 3 X=0), slf =W(ti +T)-WL 9 

L is the length of the resonator, and T is the time of flight, 
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Neglecting in Eq. (13) terms proportional to (k”‘p)/( kt2) 31 k(l), p) - 1/4y2 , 

we arrive to 

p*r/* -- 
flf = w ( cos* Lylf - cos* fy*j 1 . 

(15) 

(16) 

Expressing T and L through the local time interval ( 1 rf - Zi we obtain: 

For a short resonator, when R(‘)p( Tf - Ti)/rn = oL/2y2 ((1, (oL = MC), 

T=E(zJ’ -Ti)/m, L=p(Zf -Ti)/m, T=&L/p . (17) 

For a long resonator, when k(‘)p( Tf - z,)/m = aL/2y2 >> 1, 

or 

L = :[l-‘$(f -EosZ Cli)lj’f -Ti) 3 

T=~L[l+~(~-EOS2 sli)] s 

(18) 

(19) 

In any case, the final phase, glf, is 

Slf =Sli +WL(E-p)/p=l& -I-oL/2y2 . m-0 

We can define the coherent interaction distance, d,, which corresponds to the 
distance where the electron phase slippage relative to the copropagating wave is 
ASI = s1 -su = n (compare with coherent radiation distance or radiation formation 

zone [lS]). Then, according to Eq. (20), d, = E y2 = ky2 and definitions for “short” 

and “long” resonators can be modified to L << d, for the short resonator, and L >> d, 
for the long resonator. 



Strong Fields 

When trying to consider the strong field case, q2 = e2a2/m2 >> 1, we realize 
that straightforward calculation of the integrals in Eqs. (7) and (8) is diffkult due to 
rapid variations of the expressions under the integrals. By transformation and 
integration of general expressions for fr,~ the exact equation valid for arbitrary 

orientation of 2 and k’*,* and for an arbitrary field strength, 7 , can be obtained 

[17]. For counter-propagating plane waves, k, (‘I and kh*) , linearly polarized along the 

y-axis, and with j directed along kl( &,O,O) , the exact equation takes the form 

20 4w2 
-A+$-f*+- 
E+P 

,* flf2 = v2x2’ cw 

where the condition glii = 52i is taken into account and 

x2 = (coq -co4* * (22) 

By applying Eq. (21) to the case of # << 1, that corresponds to ,!?e + 0 (or 
w + co), we obtain 

fl,2 = m2q2y1,2 /( k(1s2b), 

where ~1.2 are functions of ~1~2 and yl +- y2 = X2 . 

For the strong field case, $ >> 1, we use similar arguments as for q2 CC 1 

above. First, notice that the condition q* >> 1 is fblfilled when Eo + 7 (or w + 0). 

Applying the limit $ + 00 to left and right sides of Eq. (21), we find the solution 

fl,2 = m2v*,2 2 k / ( (@P) , 

where y1,2 are functions of 51,~ and yry2 = X2 . The simplest choice that provides the 

symmetry condition, kc’) ti kc*), fi t) f2, is y1 = y2 = 1x1 as is adopted below. 

COMPTON SCATTERING IN STANDING EM WAVE 

The total radiated energy during the passage of the electron through the optical 
resonator of the length L is 



where w is the four- vector of acceleration, 

2 I dxp dnp -- 
w =zdz dz’ 

(25) 

W-3 

For the weak field case, # c< 1, np is given by Eqs. (6)-(8), and (23). For 

the strong field case, use Eq. (24) instead of Eqs. (23). 

Consider the weak field approximation for the ultrarelativistic electron motion 
along the standing wave axis. Then, the expression under the integral in Eq. (25), up to 

the terms proportional to q4, is 

w2no =$[$j’r(k(2)p)+f+(kC2Jp)(k(1)k(2J)+;(kC2Jp)]}. (27) 

The integral in Eq. (25) looks slightly different for long and short cavities: 

AE = 1 e2v2@2++p)2 
3 ,3 (7f -7i){1+3q20(SU)} 9 

dSli) = 
{ 

l/2 - cos2 GJj , L&Y2 >H ; 
l/2 -COS2 $*i + COS$*j 3 LO/2y2 ((1 * 
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(29) 

Using Eqs. (17)-(19) for the time of flight, T we obtain the following 
expressions for the average intensity, I = AE/T, of the scattered radiation: 

for a long resonator 

4ong =[e2?J202(E+p)2/3m2][l+4q2(l/2-cos2 slj)], (30) 

and for a short resonator 

Ishort ~[e27j2w’(E+p)2/3~2][l+3Tj2(l/2-COS2~~j +fCOS**i)]. (31) 

In the CGS system, the right hand side of Eqs. (28) and (29) need to be multiplied by 
the factor c-‘, the right hand side of Eqs. (30) and (3 1) - multiplied by the factor cm’, and 
p will be replaced by pc. 

Eqs. (30) and (31) comply, to the precision of up to q*, with the results obtained 
for a single plane wave in Ref. [13], [14] (if we take 5 = 0 ). The difference is due to 

the terms proportional to q4 which depend upon the initial phase. The dependence of 



the nonlinear Compton scattering on phase can be used for the electron microbunch 
diagnostics. 

For the ultrarelativistic strong field case, when r/2 >> 1, the total radiated energy 
during the electron passage through the optical resonator is 

AE = ( 16a4~4e20/3m4)~~~{ sin2 ~(cos51- cossz)& I= 

( 2c4q4e2w/3m4)[4( qlf - qj) + sin2qf - sin2sli] . 
(32) 

In Eq. (32), sin* 52 and cos* 52 are set equal to their average value l/2, that is 
possible due to rapid variation of 52. 

For a short resonator ( coL/2y2 c< 1 ), Eq. (32) can be reduced to 

AE = 2E2q4e2a2 L[ 2 -I- cOs2~~i] / 3m2 ; (33) 

.and for a long resonator ( aL/2y2 >> 1) 

AE = 8e2tz2q4c02L/3m2. (34) 

In the CGS system, the right hand side of Eqs. (33) and (34) is multiplied by cm6. 

DISCUSSION AND CONCLUSIONS 

Following the classical approach developed in [13,14] for a single planar EM 
wave, the general solutions for electron motion in the field of two linearly polarized 
planar EM waves are obtained. Special consideration is given to the problem of 
radiation of the ultrarelativistic electrons, propagating along the standing EM wave 
axis. 

The total radiated energy due to Compton scattering is defined primarily by the 
wave counter-propagating to the direction of the electron momentum. This feature is 
physically understandable, if we take into account that the relativistic electron 
experiences quickly oscillating force from the counter-propagating component of the 
standing wave that causes the electron to radiate, but moves practically in phase with 
the co-propagating component. Constant amplitudes of the electric and magnetic fields 
produced by the co-propagating wave define a drift of the electron trajectory in the 
cavity. As a result; the amplitude of the electron oscillation is modulated by the initial 
phase, and this is revealed through radiation. 

We can expect that the overall angular and spectral spread of the radiated photons 
shall generally obey distributions obtained in [13,14,19,20] for backscattering of a 
single laser beam on the relativistic electron beam. However more detailed analysis may 
be necessary, especially for the spectral distribution of the phase dependent terms in 
Eqs. (19,28-29,33). 
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Phase dependence of the nonlinear Compton scattering in a standing laser wave 
may be used for microbunch characterization (bunch duration, longitudinal charge 
distribution). This is required for the advanced laser acceleration experiments, such as 
the STELLA experiment at the Brookhaven ATF [ 111. 

Propagating along the axis of the standing EM wave, the electron can loose its 
energy via Compton scattering or acquire it in the inverse process. 

Using general solutions obtained in Section 3 for the electron passing through the 
radiation filled plane-parallel cavity, we can address a problem of electron acceleration 
in vacuum. For weak field case, 7 c< 1, the momentum of the electron at the exit from 
the cavity is 

P2V2 pf = pi -E COS*a f -COS25~i 
( 

) ~Pi(l~~[EO~[~*~+~)~co~51i]} ‘(35) 

For a short resonator ( coL/2y2 cc 1) 

PV2 1 Pf ‘Pi 1-E 2-COS2~i-SiIS25*i [. ( I , 
and for a long resonator ( wL/2y2 >> 1 ), after averaging over small changes in 

Ao 4y2 
frequency, - o G,,Cl9 

pf =pi[l-~(~-COS*5*~)]. 

(36) 

(37) 

Thus, if cos2 sli ) l/2 , the acceleration takes place. For example, if 

sli =Wti = 0 and q2 =0.25, then, after passing the resonator, pf =1.12 pi. 

Contrary to Compton scattering, electron acceleration is primarily due to the 
component of tbe standing wave collinear with the electron propagation. The effect of 
the second counter-propagating wave is dumped due to the phase averaging. In the 
classical approach considered here, the acceleration of electrons is due to the 
ponderomotive fforce related to the linear and nonlinear parts of the Lore& force as it 
is typical for the ponderomotive acceleration processes [ 10, 15, 161. 

The facts that the electron-laser interaction is localized within the finite optical 
cavity and the accelerating force is nonlinear to the laser field circumvent the Lawson- 
Woodward theorem [2 13, that otherwise forbids the residual electron energy gain from 
EM waves in vacuum. 

The revealed dependence of the electron momentum at the exit of the optical 
resonator upon the initial phase of the standing EM wave may be potentially used for 
electron (positron) microbunch diagnostics as well. 
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